The Un-normalized Graph p-Laplacian based Semi-supervised Learning Method and Speech Recognition Problem
نویسندگان
چکیده
Speech recognition is the classical problem in pattern recognition research field. However, just a few graph based machine learning methods have been applied to this classical problem. In this paper, we propose the un-normalized graph p-Laplacian semi-supervised learning methods and these methods will be applied to the speech network constructed from the MFCC speech dataset to predict the labels of all speech samples in the speech network. These methods are based on the assumption that the labels of two adjacent speech samples in the network are likely to be the same. The experiments show that that the un-normalized graph p-Laplacian semi-supervised learning methods are at least as good as the current state of the art method (the un-normalized graph Laplacian based semi-supervised learning method) but often lead to better classification sensitivity performance measures.
منابع مشابه
Un-Normalized Graph P-Laplacian Semi- Supervised Learning Method Applied to Cancer Classification Problem
A successful classification of different tumor types is essential for successful treatment of cancer. However, most prior cancer classification methods are clinical-based and have inadequate diagnostic ability. Cancer classification using gene expression data is very important in cancer diagnosis and drug discovery. The introduction of DNA microarray techniques has made simultaneous monitoring ...
متن کاملApplication of three graph Laplacian based semi-supervised learning methods to protein function prediction problem
Protein function prediction is the important problem in modern biology. In this paper, the un-normalized, symmetric normalized, and random walk graph Laplacian based semi-supervised learning methods will be applied to the integrated network combined from multiple networks to predict the functions of all yeast proteins in these multiple networks. These multiple networks are network created from ...
متن کاملHypergraph and protein function prediction with gene expression data
Most network-based protein (or gene) function prediction methods are based on the assumption that the labels of two adjacent proteins in the network are likely to be the same. However, assuming the pairwise relationship between proteins or genes is not complete, the information a group of genes that show very similar patterns of expression and tend to have similar functions (i.e. the functional...
متن کاملA Combinatorial View of the Graph Laplacians
Discussions about different graph Laplacians, mainly normalized and unnormalized versions of the graph Laplacians, have been ardent with respect to various methods in clustering and graph based semi-supervised learning. Previous research on the graph Laplacians investigated their convergence properties to Laplacian operators on continuous manifolds. There is still no strong proof on convergence...
متن کاملGraph Based Multi-class Semi-supervised Learning Using Gaussian Process
This paper proposes a multi-class semi-supervised learning algorithm of the graph based method. We make use of the Bayesian framework of Gaussian process to solve this problem. We propose the prior based on the normalized graph Laplacian, and introduce a new likelihood based on softmax function model. Both the transductive and inductive problems are regarded as MAP (Maximum A Posterior) problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017